
Laser Phys. Lett. 3, No. 5, 223–243 (2006) / DOI 10.1002/lapl.200510059 223

Abstract: We review experimental and theoretical studies of co-
herent backscattering of near resonant radiation from an ultracold
atomic gas in the weak localization regime. Recent accomplish-
ments in high resolution spectroscopy of atomic ensembles based
on the coherent backscattering process are discussed. We also
propose several new experimental schemes for time-dependent
spectroscopy as applied to multiple scattering in the regime of
weak localization.

A coherent backscattering image of light scattered from an
atomic cloud of 85Rb atoms in the lin ⊥ lin polarization chan-
nel
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1. Introduction

The study of optical phenomena is an ancient quantita-
tive scientific discipline, with historical roots extending
more than two millennia into the past. It was therefore re-
markable that, as recently as twenty years ago, in 1984, a
completely new classical optics effect was reported for the
first time in the scientific literature. It was then that Ishi-
maru and Kuga [1] reported the observation of coherent
backscattering (CBS) of light from a disordered scattering
sample. This report was quickly followed by experimen-
tal and theoretical work [2,3] that included explanation of
the effect based on the classical physical optics of elec-
tromagnetic wave scattering in a disordered medium. In
the coherent backscattering effect, there is an enhancement
in the intensity of light scattered in the nearly backwards
direction from a liquid or optically disordered solid. The
enhancement may be as large as a factor of two over the
usually expected average incoherent scattered light inten-

sity. Further, the enhancement effect is concentrated in a
cone-shaped interference profile typically a few milliradi-
ans in angular width. The fundamental mechanism devel-
oped was that electromagnetic wave scattering along recip-
rocal, or time-reversed, multiple scattering paths preserves
the relative phase. The result of phase preservation, after
configuration averaging, along the reciprocal paths leads
directly to prediction of the main features of the coherent
backscattering cone for semi infinite disordered scattering
samples.

The basic coherent backscattering effect is remarkably
robust, and can be observed in wave scattering from a wide
range of common natural and manmade materials [4–6]. In
the optical regime, the quantitative features are also quite
sensitive to the polarization of the incident and detected
waves. The CBS effect is not restricted to scattering of
electromagnetic waves, but has been observed, for exam-
ple, in acoustics, ultrasonics, and in propagation of waves
in the solid earth. For each of these areas there has been a
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significant range of fundamental studies and development
of practical applications [4,5], particularly in the areas of
imaging or detection of embedded objects within diffusive
media. Another very important associated research area is
connected to lasing and wave amplification in random me-
dia having gain [7].

It is our purpose in this review to consider the
more specialized and more recent developments associ-
ated with coherent backscattering of light in ultracold
atomic gaseous samples. Such samples have characteris-
tically very high Q and strong optical resonances, mak-
ing them unique in comparison to scattering from classi-
cal condensed or liquid samples [8]. Further, for scatter-
ing from single atoms, the varied influences of optical and
atomic polarization, and the responses of atomic systems
to applied static and dynamic fields are well known in the
linear response regime [9]. Nonlinear responses to applied
electromagnetic fields are also well studied [10,11]. These
characteristics make theoretical and experimental study of
mesoscopic wave scattering in atomic media an attractive
and accessible area of research.

Mesoscale processes in dense and cold atomic vapors
can also display a constellation of fundamental and po-
tentially important phenomena. One of these, strong lo-
calization of light [4], is a dynamic research area in its
own right. Strong localization of light is the optical ana-
log of Anderson localization of electrons [12], in which
energy transport through a medium is suppressed by inter-
ferences mediated by multiple scattering in a spatially ran-
dom medium. Two reports of strong localization in con-
densed systems have been made in the literature, one in
the optical regime [13], and the other in the microwave re-
sponse of a quasi-one dimensional system [14]. Localiza-
tion is expected to occur in the density range given by the
Ioffe-Regel condition, kl < 1, where k is the local wave
vector in the medium and l the mean free path for light
scattering. In a dilute atomic vapor, the mean free path is
l = 1/ρσ, where ρ is the atom density, and σ the light scat-
tering cross section [4,8]. Light localization has not yet
been observed in an atomic vapor, even though the den-
sity and temperature regimes where it is expected to occur
are technically accessible using the techniques of ultracold
atomic physics [15].

In addition to the intriguing possibility of strong light
localization in an atomic gas, research into other linear and
nonlinear effects in a multiple scattering environment is
relatively undeveloped [16]. There are also potential ties
to other areas of modern quantum optics research, includ-
ing the developments of quantum memories in the form
of polaritonic excitations [17,18] in strongly scattering
media. Manipulation of propagation and scattering in ul-
tracold atomic gases, through application of electromag-
netically induced transparency in various configurations
[19–21], could potentially lead to coherent control of opti-
cal transport properties in such media. Similar techniques
have been applied to nonlinear optical phenomena [22,23]
including four-wave mixing [24], nonlinear optics at very
low light levels [25], and applications of nonlinear optics

with single photons to quantum information processing
[26].

In this review we focus our discussion to near-
resonance multiple light scattering, in the weak localiza-
tion regime, in ensembles composed of ultracold atoms.
We review the various theoretical and experimental results
in this field, with some emphasis on our theoretical devel-
opment, but with due attention to the many recent exper-
imental achievements in this area of research. The main
physical observable is the coherent backscattering cone,
which is qualitatively characterized by an overall enhance-
ment and angular width. We discuss the influence, in the
coherent backscattering effect, of ensemble size, optical
depth, hyperfine and Zeeman structure, and spectral detun-
ing from resonance excitation. The fascinating spatial vari-
ations in the angular distribution of backscattering light
produced by application of external static magnetic fields
of a few gauss are also reviewed. A dynamic area of theo-
retical research, for which there are as yet only a few ex-
perimental results, is the area of nonlinear optical effects in
coherent backscattering; we present an overview of these
studies as well. Of particular interest here is the time devel-
opment of the angular distribution and spectral profile of
multiply scattered near-resonance radiation. For observa-
tions of the time development of diffusely scattered light,
experimental and theoretical results show strong variations
with light polarization and detuning. In the backscattering
direction, the theoretical analysis of the time development
of the scattered flux reveals a variety of transient effects
in the coherent backscattering enhancement. Finally, we
include in an appendix some details of the theoretical de-
velopments which will be of interest to some readers.

2. Theoretical overview

2.1. Microscopic description

Consider an atomic ensemble consisting of atoms sepa-
rated on the average by a distance larger than a typical
radiative wavelength λ. Let this ensemble scatter low in-
tensity light, such that the interaction process can be de-
scribed properly by a perturbation theory approach. Then
in the Heisenberg formalism the operator for the positive

frequency component of the electric field Ê
(+)

(r, t) at the
point r and at the moment t, modified by the process of
multiple scattering, can be expressed by the following se-
ries

Ê
(+)

(r, t) = Ê
(+)

0 (r, t) +
∑

a

Ê
(+)

a (r, t)+ (2.1)

+
∑
ab

′
Ê

(+)

ab (r, t) +
∑
abc

′
Ê

(+)

abc (r, t) + . . . .

This expansion, written for the positive frequency compo-
nent of the electric field, shows how the different scattering
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orders, starting from single via double and triple scatter-
ing, up to the higher orders, subsequently contribute to the
outgoing Heisenberg operator. The indices a, b, c, etc. enu-
merate the atoms participating in the scattering process. In
double scattering a �= b, but in higher scattering orders re-
current scattering, in which some of the indices coincide,
can occur.

The expansion (2.1) can be proved under the assump-
tion that at a microscopic level each randomly chosen and
isolated atom of the ensemble scatters light independently
from its environment. Then the series can be generated as
an expansion of evolution operators acting on the origi-

nal ”non-dressed” operator Ê
(+)

0 (r, t) ignoring any inter-
ference in interactions relating to different and well sepa-
rated atoms. This makes possible independent evaluation
of each scattering amplitude as well as the radiative cor-
rection of the excited state atomic Green function. In the
case of weak interactions, when the incoming field does
not noticeably modify the dynamics of the atomic subsys-
tem, the final operators of the positive/negative field com-

ponents Ê
(±)

(r, t) preserve the canonical commutation

relation between the non-perturbed operators Ê
(±)

0 (r, t).
Thus the transformation (2.1) is unitary and the whole se-
ries reproduces correctly the microscopic behavior of the
Heisenberg field operator. This important property is based
on the absence of any losses of light apart from the scat-
tering channel, see [27].

As a pedagogical example, which will be used
throughout our discussion, let us show how a double scat-
tering term can be written in the case of successive scatter-
ing on atom “one” first and on atom “two” second

Ê
(+)

12 (r, t) =
1

|r − r2|r12
× (2.2)

∑
m1,m′

1

∑
m2,m′

2

∑
ν

∑
ij

∑
k,µ

(
2πh̄ωk

V
)1/2

ω2
2

c2

ω2
12

c2
×

× exp(−iω2t + ik2|r − r2| + ik12r12 + ikr1)ek′ν×

×α̂
(m′

2m2)
νi (ω12 − k12v2) δ⊥ij α̂

(m′
1m1)

jµ (ω − kv1)akµ .

It is assumed here that, before interaction, the light sub-
system is specified by the set of modes described by the
wave vector k, frequency ω = ωk and the polarization vec-
tor ekµ. Then akµ is an annihilation operator of the mode
in the Schrödinger representation and V is the respective
quantization volume. For light scattered from atom ”two”
and propagating into its radiation zone, similar parame-
ters are respectively defined as k′, ω′ and ek′ν . If atoms
are moving in space with velocities v1 and v2 the input-
output transformations of the light frequency, as a result of
successive quasi-elastic scattering events, is a direct con-
sequence of the combined action of Raman processes and
the Doppler effect.

ω12 = ω − ωm′
1m1 + (k12 − k)v1 , (2.3)

ω′ = ω2 = ω12 − ωm′
2m2 + (k2 − k12)v2 .

The light scattering is accompanied by Zeeman transitions
|m1〉 → |m′

1〉 and |m2〉 → |m′
2〉 in the ground states of

the first and the second atoms. The intermediate and output
wave vectors are given by

k12 =
ω12

c

r2 − r1

|r2 − r1| ≈
ω

c

r2 − r1

|r2 − r1| , (2.4)

k′ = k2 =
ω2

c

r − r2

|r − r2| ≈
ω

c

r − r2

|r − r2| ,

where the observation point r tends to infinity and the ap-
proximated expressions, defined by the last equations and
ignoring all inelastic corrections, should be substituted in
the Doppler terms of (2.3). By r12 = |r2 − r1| we denoted
the relative distance between atom “one” and atom “two”
which are located respectively at spatial points r1 and r2.
Considering the reciprocal scattering path, i.e. scattering
from atom “two” first and atom “one” second it is only
necessary to transpose the indices 1 ↔ 2 in the above
transformations, and the output frequency will obtain a
different magnitude ω1. But, as can be verified straightfor-
wardly for specific scattering channels such as the forward
and backward directions, the following equality is satis-
fied: ω′ = ω2 = ω1.

The most important characteristic contributing to (2.2)
is the scattering tensor, which can be defined in operator
form as follows

α̂
(m′m)
ji (ω) =−

∑
n

|m′〉〈m| (dj)m′n(di)nm

h̄(ω − ωnm) + ih̄γn

2

≡ (2.5)

≡ |m′〉〈m|α(m′m)
ji (ω) .

Here di and dj are vector components of the transition
dipole moment between lower |m〉, |m′〉, and upper |n〉
states, ωnm is the transition frequency and γn is the natu-
ral relaxation rate of the upper state. As long as γn has a
pure radiative nature the partial transformation of the field
operator in each scattering event, described by the ampli-
tude (2.5), is unitary.

The δ⊥-symbol is defined as

δ⊥ij = δij − k12ik12j

k2
12

, (2.6)

which guarantees that the light wave propagating between
the scatterers is transverse.

There are no additional physical ideas necessary to re-
cover the whole series (2.1). Other terms contributing to

this expansion, such as Ê
(+)

abc (r, t) for triple scattering and
the higher order terms, can be written similar to (2.2).
For each scattering sequence a, b, c, . . . the corresponding
multiple amplitude will be a subsequent product of scat-
tering tensors and the photon Green functions in vacuum,
these being responsible for the light propagation between
the scatterers. Thus the entire series can be recovered by
following the simple combinatorial rules formulated in the
beginning of this section.
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2.2. Mesoscopic averaging and macroscopic
description

We restrict our discussion by application to the experi-
ments directed towards measurement of the first order in-
terference or correlation properties of light, which are de-
scribed by the following correlation function

D(E)
µν (r, t; r′, t′) =

〈
Ê(−)

ν (r′, t′)Ê(+)
µ (r, t)

〉
. (2.7)

Here the angle brackets denote statistical averaging over
the initial state of atoms and light. In the case of an ultra-
cold atomic gas that is not in a quantum degenerate phase,
the location of atoms can be visualized as the location
of classical objects distributed in a certain macroscopic
volume. Then there are the following important processes
governing the averaging procedure.

First, for a light ray propagating in any direction, there
is a preferable coherent enhancement for its forward prop-
agation. This means that along any ray, for a short meso-
scopic scale consisting of a large number of atoms, there
is only a slight attenuation of the propagating wave. Such
an attenuation comes from the events of incoherent scat-
tering, which have small but not negligible probability.
Then an important modification should be made for the
propagation of the light wave between any pair of neigh-
boring atoms, see example (2.2), as well as for the in-
coming and outgoing parts of the light path. The Green’s
function responsible for the light propagation in a vacuum
should be replaced by the Fourier image of the retarded-
type Green’s function responsible for the dispersion and
intensity attenuation of the forward propagating light in
the bulk medium,

δ⊥ij
1

r12
exp [ik12r12] → − 1

h̄
D

(R)
ij (r1, r2, ω12) , (2.8)

where ω12 is given by (2.3). The complex conjugate of
Eq. (2.8) transforms its right-hand side to the Fourier com-
ponents of the advanced-type Green function.

In a homogeneous and isotropic medium, the Green’s
function can be introduced by direct modification of the
exponential factor in the left hand side of Eq. (2.8) through
absorption and refraction indices of the medium. But in an
inhomogeneous polarized atomic gas it becomes a consid-
erably more complex problem. Therefore, in an appendix
we briefly review the properties of the retarded Green’s
function and show how it can be calculated in application
to the problem of light propagation through a polarized
atomic ensemble.

After averaging, the actual light wave in the sample
can be visualized as a set of unknown zigzag paths, whose
vertices consist of atoms scattering the light from the di-
rection of forward propagation. Any randomly chosen path
contains a chain of atoms located at the vertices and their
number is just associated with the scattering order. Each
chain of atomic scatterers makes a partial contribution to
the formation of the outgoing wave similar to how it is de-
scribed by expressions (2.1) for the Heisenberg operators.

The important difference is that, as a result of the meso-
scopic averaging, the series converges rapidly and only
the multiple scattering of the low orders contribute signif-
icantly to the formation of the correlation function (2.7).

Secondly, it is remarkable that the coherence is not
completely lost for scattering in the non-forward direction.
For the light emerging from the sample in the backward
direction the interference of multiple amplitudes for any
selected chain of scatterers survives statistical averaging.
This is known as the coherent backscattering (CBS) ef-
fect, which is closely related to weak localization of light.
Comparing the expression (2.2) with a similar one writ-

ten for the reciprocal Ê
(+)

21 (r, t) term, the CBS effect as
well as the criteria of its observation can be clearly seen.
If scattered light is detected at any random angle, such as
k′ + k �= 0, the interference contribution becomes quite
sensitive to the atoms locations. In a sample consisting of
many atoms the interference, being averaged over all pos-
sible combinations of atomic pairs, will be negligible com-
paring with ladder (non-interference) term. But this would
not be the case in observation of the scattering in the back-
ward or near-backward direction, where k′+k → 0. Weak
oscillations caused by atomic motion or Raman type scat-
tering still survive. But these also become negligible in the
case of elastic scattering on cold and slowly moving atoms.

2.3. Observable characteristics in coherent
backscattering

Normally the relevant quantity for discussing the scatter-
ing process is a differential cross-section, which is defined
as the normalized flux of the scattered light emerging the
sample in the observation direction. In terms of the cor-
relation function the cross section is given by expression
(2.7) considered at coincident spatial and time arguments:
r = r′, t = t′. In this section we illustrate by certain
physical examples that the spectrally-sensitive and time-
dependent measurements of the light correlation function
(2.7) provide us further information than the measurement
of the cross-section only. We concentrate ourselves on the
time dependence of the correlation function, which corre-
sponds to the following observation schemes.

First, the excitation of the ensemble can be initiated by
a coherent light pulse. In this case the original correlation
function will be factorized in the product

D(E)
µν (r, t; r′, t′) = E(−)

ν (r′, t′)E(+)
µ (r, t) , (2.9)

where E(+)
µ (r, t) is a coherent field component of the laser

light pulse. Then the scattered response (2.7), whose shape
is a distorted copy of the original pulse profile, can provide
us with comparative information about how this response
is sensitive to the effects of single and higher orders of the
multiple scattering. The appropriate analysis of the scat-
tered pulse can be made by the methods of time-dependent
spectroscopy.
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Second, atomic motion, which always exists in a real-
istic sample, leads to a random low-frequency modulation
of the scattering terms because of the Doppler effect. As
clearly seen in the example of double scattering (2.2), such
a modulation is described by velocities v1 and v2 consid-
ered as stochastic parameters in the frequency transforma-
tion (2.3). Then the probe of the sample with a monochro-
matic coherent wave of frequency ω will be modified in
response as a non-monochromatic scattered wave with the
output correlation function (2.7) decaying as a function of
t − t′. Taken at coincident spatial arguments r = r′ and
for a point-like photodetector, the correlation function can
be expressed in the form

c

2π
D(E)

µν (r, t; r, t′) = e−iωRτIµν(τ) , (2.10)

where ωR denotes the carrier frequency of the scattered
light, which in general can be shifted from the input fre-
quency ω because of the inelastic Raman effect. The out-
going intensity in any selected polarization channel is de-
scribed by the Poynting vector Iµνk′/k′ (for µ = ν) and
is given by the correlation function considered at coinci-
dent times t = t′. The dependence on τ = t′ − t in the
right hand side comes from the spectral distribution of the
scattered modes. The Fourier transform

I(ω) =
∑

µ=1,2

∞∫
−∞

dτei(ω−ωR)τ Iµµ(τ) (2.11)

gives us the spectral distribution of the scattered intensity
in the vicinity of the Raman frequency. As we see, the
knowledge of the spectral distribution (2.11) provides us
with quite important information about the velocity dis-
tribution and possible correlations existing in an atomic
ensemble confined with a magneto-optic trap. The corre-
sponding spectral selection can be done by heterodyne de-
tection and the light beating spectroscopy method [28].

We conclude the theoretical overview by the following
remark. If an atomic sample were excited with monochro-
matic mode and the effect of atomic motion were ne-
glected, then all the characteristics of the scattered light
would be completely described inside the cross-section
formalism. The spectrally sensitive and time-dependent
analysis gives us more access to the important physical
information concerning the light propagation and internal
dynamics of the atomic gas in the magneto optic trap.

3. Experimental overview

3.1. Apparatus

In this section we give a broad overview of an experimen-
tal apparatus used to measure light scattering in an en-
semble of atoms consisting of an ultracold, dilute gas of
atomic 85Rb confined in a magneto-optical trap (MOT).
The description here refers in particular to that of [27]; the

physics of the process is such that the described approach
is quite general. In the present case, the MOT operates on
the 5s2S1/2F0 = 3 → 5p2P3/2F = 4 hyperfine transition
and produces a nearly Gaussian cloud of approximately
108 atoms at a temperature ∼ 100 µK. The peak density at
the center of the trap is ∼ 3 × 1010 cm−3. The Gaussian
radius of the sample is r0 ∼ 1 mm, determined by fluo-
rescence imaging. Measurement of the spectral variation
of the transmitted light gives a peak optical depth, through
the center of the trap, of b0 = 6 − 8. For a Gaussian atom
distribution in the trap, the weak-field optical depth, on
resonance and through the center of the trap, is given by
b0 =

√
2πn0σ0r0, where n0 is the peak trap density and

σ0 is the resonance cross section, see Sec. 4.1. Note that
for an isolated transition the near resonance cross section
for light scattering σ and the respective optical depth b vary
with probe frequency such that

b =
b0

1 + (2∆/γ)2
, (3.1)

where ∆ = ωL − ω0 and ωL is the probe frequency, while
ω0 is (in the present case) the F0 = 3 → F = 4 resonance
frequency.

Separate lasers are used to provide the trapping and
probe light. In both cases, a continuous wave diode laser
having a bandwidth ∼ 1 MHz is used. A full description
of the master-slave laser system and vacuum hardware can
be found in [27]. The laser intensity for both the trapping
and probe light is modulated with an acousto-optic mod-
ulator (AOM) - used as an optical switch - which gener-
ates nearly rectangular pulses of adjustable duration. The
20 dB response is limited by the AOM to about 60 ns. The
laser light is subsequently coupled into a single mode fiber
optic patchcord. The combination of the AOM switching
and fiber coupling results in an ∼ 65 dB attenuation of
the laser light when switched off. A weak probe laser is
tuned in a range of several γ around the trapping transition.
The probe laser is linearly polarized in the vertical direc-
tion. The probe beam is directed into the MOT as shown
in Fig. 1.

Depending on the experiment to be performed, light
scattered by the atoms is detected either in the backward
direction on a liquid nitrogen cooled charge-coupled de-
vice (CCD) camera or in a direction at some other angle
relative to the incident probe beam using a photomultiplier
tube (PMT).

3.2. Coherent backscattering measurements

For measurements of the CBS cone, great care must be
taken to suppress multiple and back reflections from optics
in the detection optical path. A major source of unwanted
back-scattered light is from the vacuum viewports on the
MOT chamber. Windows are typically wedged and V-type
anti-reflection (AR) coated for 780 nm on the probe laser
entrance and exit ports and on the CCD camera. The AR
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MOT

Chopper

Field Lens

PMT

Field Lens

LPPump Laser BS

CCD Camera

Lenses

WP

Display

Figure 1 (online color at www.lphys.org) A schematic diagram
of a typical experimental arrangement. Shown in the figure is a
magneto optical trap (MOT), linear polarizers (LP) which select
the detected polarization channels, a beam splitter (BS), wave
plates (WP) and a photomultiplier tube (PMT) to detect the fluo-
rescence signals for time dependent measurements. For continu-
ous wave measurements, a charge-coupled device (CCD) camera
is used. The generic display is a multichannel scalar for time de-
pendent measurements
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Figure 2 (online color at www.lphys.org) A coherent backscat-
tering cone in the helicity non-preserving channel associated with
the F0 = 3 → F = 4 transition in ultracold atomic 85Rb.
Reprint of Fig. 3 from [30]; copyright 1999 by the American
Physical Society

coating characteristically results in less than 0.25% reflec-
tivity at 780 nm. Additionally, the entrance port window
can be mounted on a ultrahigh vacuum bellows, allowing
redirection of unwanted reflections away from the detec-
tor.

After exiting the fiber, the probe beam was expanded
and collimated by a beam expander to a 1/e2 diameter of
about 8 mm. The polarization of the resulting beam was
selected and then the beam passed through a nonpolariz-
ing and wedged beam splitter that transmits approximately

half of the laser power to the atomic sample. The backscat-
tered radiation is directed by the same beam splitter to a
field lens of 45 cm focal length, which condenses the light
on the focal plane of the CCD camera. The diffraction lim-
ited spatial resolution was about 100 µrad, while the po-
larization analyzing power is greater than 2000 at 780 nm.
Any one of the four polarization channels that are custom-
arily studied in coherent backscattering can be selected by
inserting or removing the quarter wave plate, and adjust-
ing the linear polarization analyzer located before the field
lens.

3.3. Time-dependent scattering measurements

For measurements of time-dependent light scattering, light
signals are detected in a direction away from the coherent
beam. In a typical geometry, as shown in Fig. 1, detec-
tion could be in a direction orthogonal to the probe laser
propagation and polarization directions. For example, in
[29], the light was collected in an effective solid angle of
about 0.35 mrad, and refocussed to match the numerical
aperture of a 400 µm multimode fiber. A linear polariza-
tion analyzer is placed between the MOT and the field lens
to collect signals in orthogonal linear polarization chan-
nels, which we label as parallel (‖) and perpendicular (⊥).
The differential polarization response is calibrated against
the known linear polarization direction of the probe laser,
and the measured 20% difference in polarization sensi-
tivity is used to correct the signals taken in the two po-
larization channels. The fiber output is coupled through a
780 nm (5 nm spectral width) interference filter to a near-
infrared sensitive GaAs-cathode photomultiplier tube. The
PMT output is amplified and directed to a discriminator
and multichannel scalar, which serves to time sort and ac-
cumulate the data into 5 ns bins. A precision pulse gener-
ator is used to control the timing of the MOT and probe
lasers and for triggering the multichannel scalar.

Finally, we point out that in this type of experiment the
quantitative results obtained depend on the relative diam-
eter of the pumping beam and the sample size. The main
effect is in the contribution of single scattering in compar-
ison with the multiple scattering signals. For a pump beam
large in comparison with the samples, there is significant
single scattering from the relatively low density periph-
ery, while for a narrow probe beam a larger portion of the
signal is due to scattering from the denser regions of the
sample.

4. CBS observation in an ultracold atomic
gas in the continuous wave regime

4.1. The enhancement factor and cone shape

First observation of the CBS effect in an ultracold atomic
gas was reported by Labeyrie et al. in [30]. In Fig. 2 we re-
produce the experimental graph from that paper showing
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at five for these calculations. Calculations refer to Monte-Carlo
simulations of light scattering on the F0 = 3 → F = 4 reso-
nance transition in ultracold atomic 85Rb

the cone feature in the spatial profile of the backscattered
light. The experiment was done with atoms of 85Rb and the
scattered light was observed as a response to a probe laser
tuned near-resonance with the closed hyperfine transition
F0 = 3 → F = 4 of the rubidium D2 line. The rubidium
atoms form a convenient sample for measurements and the
dependence of Fig. 2 shows a typical behavior of the CBS
cone from an ensemble of these atoms. The measurements
shown in Fig. 2 [30] were made with a circular polarized
cw monochromatic probe laser, and the scattered light was
detected in the channel with orthogonal helicity, which re-
lates to the Rayleigh process for the single scattering event.

The graph shown in Fig. 2 gives us the following two
important parameters of the CBS process. The main in-
formative parameter is the so-called enhancement factor,
which is defined as

α = 1 +
IC

IL + IS
(4.1)

and shows the maximum enhancement of the backscat-
tered intensity. As was discussed in the theoretical
overview, the additional intensity in the scattered light
is a result of constructive interference between direct
and reciprocal scattering paths and is described by the
cross terms IC in the numerator of (4.1). The denomi-
nator consists of the single scattering contribution IS and
non-interfering ladder contributions IL of the second and
higher orders of multiple scattering. As is clear from the
structure of Eq. (4.1), for classical type dipole scatterers
with only Rayleigh scattering channels, the enhancement
factor α should approach 2 if the optical depth b0 tends to

infinity. But it is also clearly seen that this is not the case
for the experimental graph shown in Fig. 2.

As was pointed out later in [31] the relatively small
magnitude of the enhancement factor is a direct con-
sequence of multi-Zeeman-level atomic structure. The
physics of the process was reiterated within an analytical
microscopic theory developed by Müller, et al. [32]. The
enhancement of a factor of two can be achieved only if di-
rect and reciprocal scattering amplitudes describe the time
reversal processes. Otherwise, for weak field scattering,
the interference always leads to an enhancement less than a
factor of two. Recovery of the factor of two in the enhance-
ment factor was clearly demonstrated in experiments on
atomic Sr by Bidel, et al. [33]; in this case scattering is on
a J0 = 0 → J = 1 transition. The differences between the
Sr and Rb cases, including the role of nonzero atom veloc-
ity, was emphasized in Wilkowski, et al. [34]. Finally, we
point out that the interferences in coherent backscattering
can be destructive in special scattering channels. Below we
discuss such an example of destructively interfering chan-
nels, where the enhancement factor is less than unity.

The second important characteristic of the cone shape
is its angular width. For simple evaluation and as a ped-
agogical model, one can imagine a semi-infinite homoge-
neous medium and apply the diffusion approach to esti-
mate the statistical distribution of spatial separations of the
first and last scatterers in a scattering chain. It is only the
location of these scatterers that determines the phase of the
interference in the cross term. This straightforwardly leads
to the following estimation of the cone angle

θ′CBS ∼ 1
kl0

, (4.2)

where l0 = 1/n0σ0 is the free path for a resonance photon
migrating in the sample, n0 is the density of scatterers and
σ0 is the resonance cross section. However the application
of this estimation to real experiments with atomic scatter-
ers confined in a MOT fails and quantitatively disagrees
with observable data.

As was shown by precise Monte-Carlo modelling in
[27], and was also discussed in [35], the cone angular
width does not depend on the diffusion length in the case
of an atomic cloud with a Gaussian-type density distribu-
tion. For the density distribution

n(r) = n0 exp
(
− r2

2r2
0

)
, (4.3)

where n0 is a peak density in the middle of the cloud and
r0 is the radius of the cloud, the relevant estimation of cone
angle is given by

θCBS ∼ 1
kr0

. (4.4)

This is illustrated by the respective dependencies shown
in Fig. 3, which shows the linear dependence of the cone
width on inverse sample size r−1

0 in various polarization
channels of the F0 = 3 → F = 4 transition of 85Rb.
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Figure 4 Hyperfine energy levels of relevant transitions in
atomic 85Rb

Since for the Gaussian cloud the optical depth is given by
b0 =

√
2πσ0n0r0 we see that the estimations (4.2) and

(4.4) differ by a factor of b0 and expression (4.2) gives a
larger cone angle width than is actually measured.

The CBS images in the plane orthogonal to the incident
and backscattered directions are different for different po-
larization channels. Normally the polarization channels are
discussed for circular and linear input and output polariza-
tions. Circular polarization is normally defined in terms of
helicities (hel) with respect to the frame of wave propaga-
tion, while linear polarization directions (lin) are defined
with respect to a laboratory frame. The scattered light is
detected either in the same polarization channel as the in-
put light or in an orthogonal polarization channel. There
is a spatial asymmetry in the linear polarization channel.
This includes a larger cone width in the vertical direction
for the lin ‖ lin channel with the lines of asymmetry along
the bisectors of the detected linear polarization directions
in the lin ⊥ lin channel. The details of the features in the
cone shape are discussed in [36].

4.2. The influence of hyperfine structure

In initial studies of coherent backscattering in atomic sam-
ples, it was assumed that for near-resonance scattering the
hyperfine structure of the excited atomic state is unimpor-
tant (other than for the degeneracies of the transitions un-
der consideration). Particularly for the F0 = 3 → F = 4
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Figure 5 (online color at www.lphys.org) Comparison of ex-
perimental and theoretical enhancement spectra in the helicity-
preserving polarization channel associated with an F0 = 3 →
F = 4 resonance transition. Theoretical spectra show modifica-
tion by Doppler broadening, which is varied from kv0 = 0 to
kv0 = 0.25γ, in an ensemble of 85Rb atoms having a peak den-
sity of n0 = 1.6×1010 cm−3 and a Gaussian radius r0 = 1 mm

“closed” transition in 85Rb the nearest hyperfine satellite
F0 = 3 → F = 3 is located at −120 MHz, see Fig. 4. This
is about 20 times the natural line width γ ∼ 5.9 MHz and
argues for the unimportance of the off-resonant transitions.
However as was predicted in [27] there is an asymmetry in
the CBS enhancement for the spectral scanning near the
resonance, this being caused by the interference among all
the hyperfine transitions. The asymmetric shape is more
clearly seen in the case of circular polarization. This indi-
cates the non-trivial spectral behavior of the Raman-type
cross/interference terms and the Raman-type ladder terms
near the resonance.

The experimental verification of this effect was made
in [37,38] and in Fig. 5 we reproduce the illustrative graph
from [37] for the helicity preserving scattering channel. In
the calculations the influence of possible heating effects,
where the Doppler broadening kv0 (v0 =

√
2kBT/m is

the most probable velocity in the atomic ensemble) was
varied from 0 to 0.25γ. The heating mechanism makes
the enhancement weaker but the spectral shape broader.
Comparing the results one can see that there is a quali-
tative agreement between theoretical calculations and ex-
perimental data. However they differ quantitatively and the
enhancement, observed in the experiment in the wings, is
even larger than its theoretical prediction. As was men-
tioned in [37] the main possible reason of such a con-
tradiction between experiment and theory is in the opti-
cal pumping process, which tends to orient atomic spins
along the probe beam. For 100% orientation this effect can
increase the enhancement up to maximum value of two.
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The enhancement of a factor of two would be achievable
because for spin oriented ensemble there is no the single
scattering contribution. Then there would be only two con-
structively interfering amplitudes if the double scattering
channel could be isolated. This effects is similar to the en-
hancement factor behavior in a strong magnetic field, as
discussed in the following section.

We conclude this section by emphasizing that there
are also significant variations in the enhancement factor
even for resonant scattering on different F0 → F tran-
sitions. This is due primarily to the different degenera-
cies associated with the transitions. Experimental confir-
mation of these variations, and comparisons with Monte-
Carlo and model calculations have recently been reported
by Wilkowski, et al. [39].

4.3. Influence of an external magnetic field

The influence of an external magnetic field on the mul-
tiple scattering in optically dense atomic ensembles was
studied in [40–42]. The unique conditions of ultracold
atomic ensembles, where there is negligible inhomoge-
neous Doppler broadening, make possible the spectro-
scopic manipulation with a magnetic field for the Zeeman
splitting of the atomic levels at the level of the natural line
width. In [40], which has no direct relation to the CBS
phenomenon, the Faraday rotation of quasi-resonant light
in an optically thick cloud of laser cooled rubidium atoms
was experimentally studied. Measurements yield a large
Verdet constant in the range 200000◦/T/mm and a maxi-
mal polarization rotation of 150◦. The Faraday effect was
initiated by the Zeeman splitting in the ground and in the
upper state, which led to differences in the refraction in-
dices for σ+ and σ− polarization of the probe light. It is
just the absence of the Doppler effect and the possibility
to scan the sample near the natural resonance line which
permits such a huge Verdet constant to be obtained.

As a next step it was recognized that a weak magnetic
field, with Zeeman splitting comparable with the natural
line width, should modify the CBS process itself. The pres-
ence of the magnetic field manifests itself in the scatterer
dipole response to the electric field in a manner similar to
the Hanle effect in a fluorescence geometry. As was shown
in experiment [41] the polar shape of the CBS cone in the
linear polarization scattering channel follows the magni-
tude and direction of the magnetic field vector. In the the-
oretical discussion of [41] an attempt was made to classify
the influence of a magnetic field in terms of the well known
Faraday, Cotton-Mouton and Hanle effects. But as is clear
in multiple scattering, and particularly in the multiple scat-
tering regime of CBS, there is only a convenient analogy
with these basic optical processes.

The remarkable manifestation of a magnetic field was
recently observed in [42]. There it was observed that the
enhancement factor can be increased with magnetic field
up to its maximal value of two. This unusual behavior ap-
pears due to lifting of degeneracy in the helicity scattering
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Figure 6 CBS enhancement factor of light for a cold Rb atomic
cloud, measured in the parallel helicity channel hel ‖ hel, as a
function of the transverse magnetic field strength B; the graph
shows an increase in the CBS enhancement for non-zero mag-
netic field. The solid line is the result of a Monte-Carlo simula-
tion. The inset shows profiles of the CBS cones when B = 0 (1)
and B = 43 G (2). Reprint of Fig. 2 from [42]; copyright 2004
by the American Physical Society

channel for the spectrally selected Zeeman hyperfine tran-
sition F0 = 3,M0 = 3 → F = 4,M = 4 of 85Rb, which
can be done by applying a rather strong external magnetic
field. For this transition there is no Raman-type scattering
in the single scattering response. If only double scattering
dominates in the helicity preserving scattering response
there should be a factor of two enhancement of the scat-
tered intensity. In the Fig. 6 we reproduced the basic graph
of [42], showing the experimental verification of this ef-
fect. Let us also point out that there is a direct analogy of
the behavior of the enhancement factor in a magnetic field
with its spectral behavior in a spin-oriented ensemble pre-
dicted in [37].

4.4. The CBS process in the saturation regime

Recent experiments by Chaneliere, et al. [43] on the res-
onance transition in atomic strontium and by Balik, et al.
[29] in rubidium, have shown that a significant reduction
in the coherent backscattering enhancement can occur with
increasing intensity of the probe laser. Both non-linear ef-
fects and additional inelastic scattering components can
contribute to this reduction. Theoretical and model studies
have shown similar qualitative effects [44–46], although
they have yet to be quantitatively compared with experi-
ment.

In the strontium experiment, a MOT containing 7×107

atoms at a temperature of ∼ 1 mK and with a Gaussian
radius of ∼ 0.7 mm was illuminated with near resonant
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(a) s = 0.08 (b) s = 0.3

(c) s = 3.0 (d) s = 9.0

Figure 7 (online color at www.lphys.org) Dependence on the
saturation parameter s in the lin ⊥ lin polarization channel, of
CCD images of the intensity field in the nearly backscattering di-
rection. The data correspond to the F0 = 3 → F = 4 hyperfine
resonance in 85Rb

light. The ensemble of cold atoms had a peak optical depth
of b0 = 3.5 and kl0 = 104, resulting in a regime of
weak localization. In the absence of MOT light and mag-
netic field gradients, a resonant probe beam illuminated
the sample for a variable period of 5 to 70 µs. The probe
pulse duration was adjusted so as to keep the total number
of scattered photons below 400 for all intensities investi-
gated, thereby minimizing mechanical effects of the light
on the cold atom sample. A CBS cone was then recorded
in the helicity preserving channel (hel ‖ hel), where sin-
gle scattering is negligible. Keeping the shape of the CBS
beam constant, but treating the width and enhancement
factors as free parameters, a CBS cone enhancement was
extracted. Results for on resonance scattering and a detun-
ing of δ = Γ/2 were measured as a function of saturation
parameter s = I/Is, where Is=42 mW/cm2. The results
indicate that saturation is in part responsible for the mag-
nitude of the cone enhancement, but saturation alone does
not fully describe the CBS process. Detuning also plays
a role because the ratio of inelastic to elastic scattering is
detuning dependent. It is the inelastic component which
degrades reciprocity and causes the enhancement factor to
decrease. As the field increases, the inelastic nature of the
light scattered also increases yielding a decreasing cone
enhancement factor.

In the rubidium experiment, a nearly spherical MOT
containing ∼ 4 × 108 at a peak density of 1.6 × 108
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Figure 8 Dependence of the coherent backscattering enhance-
ment on the saturation parameter s in the lin ⊥ lin polarization
channel. The data correspond to the F0 = 3 → F = 4 hyperfine
resonance in 85Rb

atoms-cm−3 was illuminated with a probe beam for time
T and the CBS cone was recorded on a liquid nitrogen
cooled CCD camera as described in Sec. 3. Two polariza-
tion channels, lin ⊥ lin and hel ‖ hel were investigated.
The intensity of the backscattered light was detected and
the enhancement factor of the CBS cone measured as a
function of probe intensity, again expressed in terms of
the saturation parameter s, where Is in this case is the on-
resonance saturation intensity of about 1.6 mW/cm2. Data
taken at s=0.08 provided the baseline for the “weak” field
cone measurements. The baseline saturation parameter and
exposure time were selected to minimize mechanical ac-
tion of the CBS laser on the cold atom sample as in the
Sr experiment. With s = 0.08, a probe exposure time of
T = 0.25 ms satisfied this condition.

Measurements up to a saturation parameter of 9 in the
lin ⊥ lin channel were made. For optical depths larger than
unity (as is the case here), one expects the width of the
cone to be determined primarily by the spatial distribution
of atoms in the MOT and not be very sensitive to the satu-
ration parameter. Indeed, little change in the angular width
of the cone was observed, in agreement with theory and the
experimental results of [43]. The cone enhancement factor
α, however, was observed to decrease substantially in the
strong field regime. Cone images for the lin ⊥ lin chan-
nel are shown in Fig. 7. In this data, the product sT was
constant and the total spatially integrated intensity was the
same in all four images.

The data, which spans a saturation parameter range
of more than 100, shows a clear reduction in the con-
trast of the cone with increasing intensity. This behavior is
shown quantitatively in Fig. 8, where it is seen that the en-
hancement α decreases with increasing saturation parame-
ter over the data range explored. As previously discussed,
a similar monotonic decrease in α has been observed in
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experiments on the singlet resonance transition in ultra-
cold Sr [43]. However, the percentage decrease in α with
increasing s was observed to be much larger in that case
than in the Rb experiments.

Measurements of α in the hel ‖ hel channel (not
shown) in the range 0.04 ≤ s ≤ 1.0 stay relatively con-
stant - in sharp contrast to the results for the lin⊥lin chan-
nel and to the results of Chaneliere, et al. [43]. The ap-
proximate constancy of α is a surprising result and sug-
gests that optical pumping of the Zeeman sublevels in the
ground level may play an important role in the observed
quantitative results. Several other possible physical mech-
anisms explaining the data have been suggested in [29] but
await confirmation by detailed calculations.

5. Time-dependent and spectral analysis of
the scattered light

5.1. Time dependent spectroscopy in a
backscattering geometry

Consider excitation of an atomic ensemble with a coherent
light pulse, when the correlation function can be factorized
in the form (2.9). Let the field amplitude of E(+)

µ (r, t) have
a rectangular pulse profile. It is convenient to scale the du-
ration of the pulse τ0 by the natural atomic lifetime γ−1. In
accordance with (2.1) and with the usual restrictions of the
rotating wave approximation, the rectangular pulse profile
should be expanded over the set of incoming modes with
the following amplitude

αkµ ∝ exp[i(ωk − ω)τ0] − 1
i(ωk − ω)τ0 − 0

eµ (5.1)

describing the pulse propagating along the z-axis with car-
rier frequency ω, mode wave vector k ‖ z, mode frequency
ωk = c k and polarization e. The pulse wavefront arrives
at the plane z = 0 at the time t = 0 and αkµ are the eigen-
states of the mode annihilation operator:

akµ|αkµ〉 = αkµ|αkµ〉 . (5.2)

This initial coherent state gives an expected number of
photons arriving at the system during the interval (0, τ0).

For an isotropic Gaussian-type cloud, with a radius
normally on the order of 1 mm, the Green’s Function (2.8)
can be expressed in the form (A.6), where for an isotropic
medium the slowly varying amplitude is given by

Xij(r1, r2, ω) = δ⊥ij exp
[
−2πω

c

∫ r2

r1

χ(r, ω) ds

]
, (5.3)

where the integral is evaluated along the ray s linking
the points r1 and r2, and χ(r, ω) is the local susceptibil-
ity of the inhomogeneous medium, see definitions (A.13),
(A.14).

In Fig. 9a we show how the originally rectangular
pulse (5.1) with duration of τ0 = 20 γ−1 is distorted in the
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Figure 9 (online color at www.lphys.org) (a) The intensity re-
sponse for light scattered in the backward direction from an
atomic sample of 85Rb probed by a pulse with a duration of
τ0 = 20 γ−1 tuned to resonance with the F0 = 3 → F = 4
hyperfine transition for different optical thicknesses b0. (b) Fluo-
rescence decay after the excitation pulse is switched off

scattering response in the backward direction. The calcu-
lations were made for the resonance F0 = 3 → F = 4
hyperfine transition of the D2 line of 85Rb for the op-
tical thicknesses b0 varying in the interval from 0 to 5.
During such a long probe of the sample the steady state
behavior, established within the temporal duration of the
pulse, is clearly indicated. But the sharp shapes of ini-
tial and final fronts of the pulse are smoothed in the re-
sponse pulse because of the delay in multiple scattering
of different orders. The dependence on optical thickness
emphasizes that this delay is longer as the scattering in
higher orders becomes more important, i.e. for higher b0.
In turn, as shown in Fig. 9(b), the presence of different
scattering orders in the outgoing response also manifests
themselves in multi-exponential decay of the fluorescence,
which approximately approaches the zero Holstein mode
for a rather long time and for high b0.
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Figure 10 (online color at www.lphys.org) Time-dependence of
the enhancement factor for the excitation conditions of Fig. 9 in
the lin ‖ lin parallel and hel ⊥ hel scattering channels. The optical
thickness b0 is equal to 5 for this graph

The importance of the response inertia is remarkably
indicated in the time dynamics of the enhancement fac-
tor for the CBS process. For a time dependent process the
enhancement factor should be defined by the ratio of the
instantaneous intensity of light scattered in the backward
direction at the moment t to the contribution of the single
scattering and only ladder-type terms of the higher orders
of multiple scattering

α(t) = 1 +
IC(t)

IS(t) + IL(t)
. (5.4)

Here IS(t), IL(t), IC(t) are respectively the single, lad-
der and crossed (interference) contributions to the instan-
taneous outgoing intensity.

In Fig. 10 we illustrate the time dependence of the en-
hancement factor calculated in the same conditions and for
the same parameters as the intensity response in Fig. 9.
The most interesting is a break point on the graph corre-
sponding to the moment when the probe pulse is switched
off. During the decay process the enhancement factor rises
up at the beginning stage and drops down only after a de-
lay and with a slower rate. Such behavior is a direct con-
sequence of the intensity decay shown in Fig. 9. Since
the single scattering disappears first then, in accordance
with definition (5.4), it should be expected that the instan-
taneous value of the enhancement factor will be raised im-
mediately after the pulse is switched off.

As one can see, the time dependent analysis gives us
certain spectroscopic access to the selective information
about different orders of multiple scattering. The CBS phe-
nomenon could be an important process for this. If the sen-
sitivity of time dependent measurements were high enough
then the long-term decay of the instantaneous value of the
enhancement factor would strongly select the contribution
of different scattering orders. Roughly we would say that
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Figure 11 (online color at www.lphys.org) Partial contributions
to the enhancement factor as function of the order of multiple
scattering for the same polarization channels as in Fig. 10

the time decay shown in Fig. 10 just copies the partial con-
tribution to the enhancement coming from different orders
of multiple scattering. To show this in Fig. 11 we plot the
calculated data for the partial contributions to the enhance-
ment factor for the scattering orders from two up to five.
As one can see there is a qualitative coincidence between
the graphs showing the time decay and the dependence on
scattering order. Both the dependencies approach the value
of unity because in higher scattering orders the number of
non-interfering amplitudes enlarges faster than the number
of interfering ones.

In discussions of the CBS process in the literature [4,8]
the cone profile itself is normally suggested as an experi-
mental reference dependence for selecting different orders
of multiple scattering. Such a spatial spectroscopy method
utilizes an idea that the higher orders contribute and are
localized near the peak point of the cusp-like CBS cone.
As is clear from the above discussion, in the time depen-
dent spectroscopy there is an alternative situation when
higher orders contribute in the wing of the time decay
of the enhancement factor. Thus the spatial spectroscopy
and time dependent spectroscopy could be complementary
techniques for study of the weak localization of light in
disordered media.

5.2. Measurements of time dependent diffuse
light intensity

To date, there have been no measurements of the time de-
pendence, in ultracold atomic gas samples, of coherently
backscattered light. However, there have been several ex-
perimental studies, in ultracold gas samples, of the time
dependence of multiply scattered light [47–49]. In this sec-
tion we present some of our combined experimental and
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theoretical results on the polarization dependence of mul-
tiple light scattering in ultracold atomic 85Rb.

The essential experimental details [47] are discussed
in Sec. 3 of this report. In these experiments, the inten-
sity of light emitted in a direction orthogonal to the exci-
tation light source is measured as a function of time and
linear polarization state. These dependences are illustrated
in Fig. 12, which shows the measured intensities in two
orthogonal polarization channels for resonance excitation
of the F0 = 3 → F = 4 hyperfine transition. In the fig-
ure, the scale of the peak intensity in the lin ‖ lin channel
is about 104 counts. In this data, the transient build up is
due to multiple scattering of probe radiation after it has
been switched on. The time scale for the process can be
seen more clearly in the expanded view in the lower panel
of Fig. 12. The solid curves in Fig. 12 represent Monte-
Carlo simulations of the scattering process. Other than the
overall intensity scale, there are no adjustable parameters
in the comparison, with the simulation input data consist-
ing of the measured trap density profile and peak optical
depth.

This data is further reduced to emphasize the inten-
sity differences for the two orthogonal linear polarizations.
This is done by defining a linear polarization degree as

PL =
I‖ − I⊥
I‖ + I⊥

. (5.5)

In the formula, I‖ and I⊥ represent the measured inten-
sities in the lin ‖ lin and lin ⊥ lin channels. The data in
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Figure 13 (online color at www.lphys.org) Measured time-
dependent linear polarization degree, shown as solid points.
Monte Carlo simulation results are shown as solid lines, while
the limiting AOM response is shown as a dotted line

Fig. 12 then give the time-dependence of PL shown in
Fig. 13. There we see that PL enhances the differences
in the different channels, thus clearly showing the time-
dependent maximum in PL soon after the exciting pulse
is turned on, which is followed by approach to a steady
state linear polarization degree. We point out that the peak
value of PL corresponds to a predominately single scatter-
ing value of PL = 0.268 for this resonance transition. As
seen in the lower panel of Fig. 13, once the probe laser is
turned off, PL rapidly decays toward 0. This emphasizes
the quite different time scales for decay of the population
in comparison to that of the electronic alignment. In all
of this data, the Monte-Carlo simulations do an excellent
job of describing both the light intensity and polarization
dynamics in the system.

Finally, it is important to note that the spectral depen-
dence of diffuse light scattering is strongly influenced by
interferences in the light scattering amplitudes from differ-
ent excited hyperfine levels. This is illustrated in Fig. 14,
which shows the spectral variation of the steady state lin-
ear polarization degree. In the figure, if hyperfine interfer-
ences were absent, the single scattering atomic polariza-
tion would be very nearly constant over the spectral range
of the figure. We should point out that there is a much more
gradual variation of the linear polarization due to coherent
excitation of the fine structure multiplet levels.

Instead, we see strong variations in the measured polar-
ization due to both multiple light scattering and due to hy-
perfine interferences. For example, as the magnitude of the
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Figure 14 (online color at www.lphys.org) Detuning depen-
dence of the linear polarization degree. The horizontal line in-
dicates the single scattering benchmark at 0.268. The dots repre-
sent the experimental data points, while the blue chained curve
is the expected variation for single atom scattering. The red and
blue curves indicate the polarization variation for optical depths
of b0 = 5 (black), b0 = 8 (red), and b0 = 10 (green)

detuning is made larger, the measured steady-state values
for PL approach the calculated frequency-dependent sin-
gle scattering limit for this transition. Near the resonance,
the polarization is significantly reduced by multiple coher-
ent scattering. In all cases, agreement with Monte Carlo
simulations is very satisfactory.

5.3. Spectral distribution of the scattered light

As an alternative to the time dependent analysis, it is
possible to determine the spectral selection of the multi-
ple scattering process. Different orders of the scattering
should have different spectral profiles in response to co-
herent monochromatic excitation. In an experiment, pre-
cise selection can be done by using the light beating spec-
troscopy technique [28]. In this approach, mixing the scat-
tered light with a local oscillator wave in a heterodyne
detection scheme yields a photocurrent spectrum which
will reproduce the spectrum of the scattered light given
by (2.10) and (2.11).

This spectrum can be calculated analytically if the fol-
lowing three basic criteria are met. (i) The velocity distri-
bution for the atoms in the trap should be of the Maxwell-
Boltzmann type. (ii) Near the Doppler cooling limit the
corresponding Doppler frequency shift is much less than
γ and the retarded and advanced type Green functions
should be insensitive to the atomic velocity distribution.
(iii) For the same reason, the dependence of the scattering
amplitude on atomic velocity should be also negligible for
deeply cooled atoms. Then for the N -th order of multi-
ple scattering the partial spectral profile will be centered at

the either the Rayleigh elastic or Raman shifted outgoing
frequency ωR and will be given by

IN (ω) =
〈

IN

√
2π

ΓN
exp

[
− (ω − ωR)2

2Γ 2
N

]〉
, (5.6)

where the Gaussian bandwidth is given by the following
sum

ΓN =
1√
2

[
N∑

i=1

|∆ki|2
]1/2

v0 . (5.7)

Here ∆ki with i = 1÷N is the sequence of changes of the
wave vector for the scattering of the light wave along any
randomly selected scattering chain consisting of N atoms.
Here the velocity v0 is the most probable velocity for the
respective Maxwell-Boltzmann distribution, see definition
in Sec. 4.2. IN = IN (r1, . . . rN ) is the total intensity of
the fraction of the light scattering in the direction of obser-
vation by the subsequent scattering from atoms located at
spatial points r1, . . . rN . The angle brackets in (5.6) de-
note the averaging over the spatial distribution of these
atoms. Such an averaging extends over ∆ki and ΓN as
well, which also depend on the locations of atoms, see
definitions (2.3), (2.4). Then the total spectrum of the scat-
tered light is given by

I(ω) =
∑
N

IN (ω) . (5.8)

It is remarkable that this result is valid for the scattering
in any direction including backscattering. The interference
terms have the same spectral profile as the ladder terms
if the atoms do not noticeably change their location on the
spatial scale of λ/2π during the retardation delay while the
light wave passes through the scattering chain. As one can
see in higher orders of multiple scattering the spectrum be-
comes broader and for an isotropic sample the bandwidth
ΓN is enhanced by N .

However in reality the assumptions (i)–(iii) are not
exactly fulfilled. First, the velocity distribution is only
approximately Maxwell-Boltzmann-type because of com-
plexity of the cooling mechanism in MOT. Second, if the
Doppler scale kv0 is comparable with the natural line
width γ, there will be additional damping mechanisms act-
ing via the Green’s propagator phase, reducing the scat-
tering amplitude. Thus the sum of Gaussian profiles (5.8)
gives us only a convenient zero-level approximation, or a
certain type of reference dependence for further spectro-
scopic analysis. The deviations from this basic dependence
provide us with actual information about real atomic mo-
tion and spatial correlations of atoms in the sample.

We illustrate this in Fig. 15 where we show typical de-
pendencies of the spectral response on the monochromatic
probe wave for the scattering near the backward direction
in the lin ‖ lin polarization channel from atoms of 85Rb.
The data are presented for the F0 = 3 → F = 4 hyper-
fine transition of the D2-line and for the different orders
of multiple scattering. The frequency of the probe wave is
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Figure 15 (online color at www.lphys.org) Spectral profiles of
the light backscattered on the F0 = 3 → F = 4 hyperfine
transition of 85Rb in Rayleigh-type lin ‖ lin polarization channel
for different orders of multiple scattering. The probe light fre-
quency is shifted to the blue wing of the resonance by one natu-
ral line width γ and the velocity distribution of atoms is assumed
to be Maxwell-Boltzmann-type with kv0 = γ. The red circle in-
dicate how the maxima approach the limit of elastic scattering
ωR = ω43 + γ in higher orders

tuned to the blue wing from the atomic resonance by one
natural line width ω43 + γ. The velocity distribution is as-
sumed to be Maxwellian with kv0 = γ. For such “hot”
atoms the ladder-type response is mainly important in the
detection channel. For Rayleigh-type scattering initiated
on the selected closed transition the carrier frequency is
ωR = ω43 + γ and, according to (5.6), it is expected that
the spectral response should be centered and distributed
near this carrier frequency shifted to the blue wing of reso-
nance. But as one can see this is not the case and the mean
frequency of the scattered light is shifted to the red wing
of the atomic resonance. This is a typical manifestation of
the Doppler effect in the denominators of scattering ampli-
tudes. In a single scattering event, the scattering is prefer-
ably organized from the atoms moving with vz ∼ γ/k in
the direction of the incoming wave front. Thus the out-
going wave, which is scattered from these atoms, will be
shifted by −2kvz ∼ −2γ. In a weaker form such an ef-
fect is preserved for the double and triple scattering chan-
nels, as also shown by the corresponding dependencies of
Fig. 15.

In Fig. 16 we show how the spectral profiles for the
total ladder and interference contributions depend on the
frequency of the probe light, which is varying from the
resonance transition frequency ω43 up to ω43 + 2γ. Other
parameters are the same as in Fig. 15. As is clearly seen,
the location of the maximum for the ladder portion shifts
to the red wing for small detuning and approaches the fre-
quency of elastic scattering ωR only for large detunings.
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Figure 16 (online color at www.lphys.org) Spectra of the ladder
(a) and interference (b) contributions to the light backscattered on
the F0 = 3 → F = 4 hyperfine transition of 85Rb for different
frequency offsets of the probe light from the resonance transition.
Other parameters are the same as in Fig. 15. The red circles trace
the location of the maxima as they approach the elastic carrier
frequency for far off-resonant scattering

For interference terms, the location of the maximum shifts
approximately as ωR, which is because of no single order
contribution in this case.

If atoms are cooled close to the Doppler limit, such that
kv0 � γ, the spectral profile will be given by expressions
(5.6)-(5.8). In this case its spectral bandwidth can be quite
narrow and in an experiment a high quality monochro-
matic local oscillator wave should be applied to resolve
the spectrum by heterodyne detection. But the possible ex-
perimental realization could give us certain access to ob-
servation of the actual velocity distribution of the ultracold
atoms in the trap, which is not necessarily Maxwellian.
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5.4. Polarization-sensitive effects:
anti-enhancement in weak localization regime

Let us consider an atomic ensemble consisting of atoms
oriented in their angular momenta. Further, let this ensem-
ble be probed with circular polarized light in a direction
antiparallel to the magnetization direction of the atomic
vapor. Such a geometry requires special preparation since,
because of the optical pumping process, there is a tendency
to reorient the collective spin vector of the atomic ensem-
ble along the beam, especially following a long interaction
with the probe light, and after an accumulation of a suf-
ficient number of Raman transitions. However during the
short pulsed excitation we can neglect the optical pumping
mechanism and assume that most of the atoms populate
the |F0,m = −F0〉 Zeeman state. In addition, and for the
reason explained below, we can assume that the ensem-
ble is located in an external weak magnetic field directed
along the light beam. Thus the photons scattered via Ra-
man channels will be generally Raman shifted. This split-
ting can be made quite small and less than the natural line
width of the respective optical transition but still resolved
with high resolution spectroscopy techniques.

In Fig. 17 we show the double backscattering of in-
cident light of positive helicity on a system consisting of
two 85Rb atoms; the exit channel consists of detection of
light also of positive helicity. The two interfering channels,
which are shown here, repopulate atoms via Raman transi-
tions from the F0,m = −F0 to the F0,m = −F0 +2 Zee-
man sublevel. In the direct path the scattering consists of
a sequence of Rayleigh-type scattering in the first step and
of Raman-type scattering in the second. In the reciprocal
path, Raman-type scattering occurs first, and the positive
helicity photon undergoes Rayleigh-type scattering in the
second step. Since identical helicities in incoming and out-
going channels have opposite polarizations with respect to
the laboratory frame, there is an important difference in
transition amplitudes associated with the Rayleigh process
for these two interfering channels. Indeed, in the direct
path the σ+ mode is coupled with F0 = 3 → F = 4,
F0 = 3 → F = 3, and F0 = 3 → F = 2 hyper-
fine transitions. But in the reciprocal path, the σ− mode
can be coupled only with the F0 = 3 → F = 4. As
we see from the diagrams shown in Fig. 17, where the
probe light frequency is scanned, for example, between the
F0 = 3 → F = 4 and F0 = 3 → F = 3 transitions, a
unique spectral feature is found when the scattering ampli-
tudes connecting the direct and reciprocal scattering chan-
nels are equal in absolute value but have phases shifted
by an angle close to π. From an electrodynamic point of
view, such conditions are realized when, due to the asym-
metry in the Rayleigh-type transitions, the real part of the
susceptibility of the sample is positive for the σ− mode
and is negative for the σ+ mode. Since, in a first approx-
imation, the amplitudes of the processes shown in Fig. 17
have opposite signs they will interfere destructively with
anti-enhancement of the light scattered in the backward di-
rection in the helicity preserving channel. Such an unusual

Atom 1
n=-4 n=-3 n=-2 F=4

F=3
F=2

F0=3

m=-3

σ+σ
−

Atom 2
n=-2 F=4

F=3

F=2

F0=3

m=-3
m=-2 m=-1

σ
−

σ+

eineout

eineout

Figure 17 (online color at www.lphys.org) Diagram explaining
the anti-localization phenomenon in the helicity preserving scat-
tering channel for double scattering of circular polarized light
from an ensemble of 85Rb atoms oriented opposite to the helic-
ity vector of the probe beam. The destructively interfering am-
plitudes are a combination of Rayleigh- and Raman-type transi-
tions. The solid and dashed lines indicate the interfering direct
and reciprocal scattering paths for probing between F0 = 3 →
F = 4 and F0 = 3 → F = 3 hyperfine transitions

behavior in the CBS process is connected with the Raman
nature of the helicity preserving scattering channel. To ob-
serve this effect, and not have it obscured by other compet-
itive and constructively interfering channels, both special
light polarization and selection of certain atomic Λ-type
transition are required.

In our example, and in the case of degenerate Zeeman
sublevels, there are several competing channels of double
scattering, which can interfere constructively. In an experi-
ment, possible selection of either destructively or construc-
tively interfering channels can be done by focusing atten-
tion to their angular dependence with respect to the loca-
tion of the atomic scatterers. For an optically thin sample
the process of Fig. 17 dominates for atoms located prefer-
ably along the probe beam direction. The respective angu-
lar factor is proportional to the probability to initiate σ+

or σ− transitions on the second atoms by the photon also
emitted on the σ+ or σ− by the first atom. The probability
is given by

P++(θ) = P−−(θ) ∝ 1
4
(cos2 θ + 1)2 . (5.9)

In turn, other processes are dominant if atoms are located
preferably in the plane orthogonal to the probe beam. Thus
in double scattering channel one can expect that, for a
cigar-type atomic cloud, stretched along the probe beam
direction and squeezed in orthogonal directions, the de-
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Figure 18 (online color at www.lphys.org) The enhancement
factor in the helicity preserving channel for double scattering as a
function of detuning ∆ = ωL −ω43 for the probe laser scanning
the upper hyperfine manifold of 85Rb. The blue curve shows the
contribution of the processes depicted in Fig. 17 and in the green
curve all the constructively interfering channels were added. Ver-
tical lines indicate the location of hyperfine resonances

structively interfering channels should give the dominant
contribution.

In Fig. 18 we show the dependence of the enhancement
factor, calculated only for double scattering amplitudes, on
the frequency of the probe field ωL. The blue curve is the
contribution of the amplitudes expressed by the diagrams
of Fig. 17. The green curve includes the whole set of the
double scattering amplitudes including all the construc-
tively interfering channels. The calculations were made
for the optical depth near the threshold level of b0 ∼ 1
at each spectral detuning ∆ = ωL − ω43. It may seem
surprising that even in this hypothetical situation, where
only the process of Fig. 17 contributes to the enhancement
factor, it actually never drops down to zero level. This is
because of the complexity of the Green propagation func-
tion in the spin polarized gas, which is discussed in an ap-
pendix. If locations of the atoms are shifted in the trans-
verse plane, the phases of the σ+ and σ− modes in the
intermediate segments of the direct and reciprocal paths
will be mismatched because of the refraction anisotropy
of the sample. It is also unexpected that the accumulation
of all the constructively interfering channels do not over-
whelm the anti-localization effects in the observation con-
ditions. The enhancement factor stays less than unity in
the level of twenty percent in the total double scattering
outcome. As follows from Fig. 18 this takes place near the
F0 = 3 → F = 2 resonance.

Let us briefly discuss the feasibility of how the anti-
localization phenomenon could be observed in experi-
ment. Our previous proposal [50] was based on the idea
to organize an inelastic Raman type selection of the pro-
cess shown in Fig. 17. For this the Zeeman sublevels of

the ground state could be split by external magnetic and
electric fields as shown in the energy diagrams of Fig. 17.
Then the heterodyne detection seems a quite preferable
high resolution spectroscopic technique to organize such a
selection. Here we draw attention to another possibility to
preferably select the double scattering, this by the time de-
pendent spectroscopy technique described in Sec. 5.1. As
far as the decay rate of an atomic dipole is insensitive to
its excitation frequency, the different orders of the multiple
scattering will be subsequently observed during the time
decay after the probe radiation is switched off, see Fig. 10.
This means that in the anti-localization regime the time de-
pendence of the enhancement factor should be expected to
break down (not up) after the probe pulse switched off. Our
evaluations reproduced by the graphs of Fig. 18 show that
such a challenging and interesting scattering phenomenon
as anti-localization of light is readily within current exper-
imental capability.

6. Conclusion

In this review, we have provided a detailed summary
of theoretical and experimental developments associated
with coherent backscattering of light from ultracold sam-
ples of Rb or Sr atoms. The main observables are the co-
herent backscattering enhancement and the width of the
backscattering cone. The paper considers the influence on
these observables of a number of external parameters, in-
cluding spectral variation from resonance excitation, the
influence of magnetic fields, suppression of the coher-
ent backscattering effect due to stronger electromagnetic
fields. In the spectral variations, interference effects due
to normally energetically distant hyperfine transitions are
considered. Interference effects due to coherent scatter-
ing from nondegenerate levels are considered, including
a regime of so-called antilocalization. The time evolution
of the coherently backscattered light is also discussed, in-
cluding the influence on the coherent backscattering cone
with time. The method of light beating spectroscopy is dis-
cussed in the context of its utility in extracting additional
information, including the actual velocity distribution of
the atoms, regarding the light scattering process.

We emphasize that research exploring the physics of
weak localization in ultracold atomic gases is clearly in the
earliest stages, and there remain many unexplored lines of
inquiry. Among these are fundamental aspects of nonlinear
optical phenomena in the multiple scattering regime, and
investigation of multifield coherences such as electromag-
netically induced transparency and absorption. Research
into nonlinear optics at very low light levels and the possi-
bilities associated with generation of novel types of polari-
tonic excitations may have important practical applications
in the area of quantum information processing. Finally, the
regime of strong localization of light in ultracold gases is
within reach of current experimental techniques of ultra-
cold atomic physics. Strong light localization, as a phase
transition in the quantum properties of energy transport in

c© 2006 by Astro Ltd.
Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA



240 D.V. Kupriyanov, I.M. Sokolov, et al.: Coherent backscattering of light

ultracold gases, promises fascinating opportunities for new
experimental and theoretical insights into the physics of
disordered systems.

Acknowledgements We would like to thank Prof. Sergey Kulik
whose kindly suggested to us to prepare this review. We ap-
preciate the financial support of the National Science Founda-
tion (NSF-PHY-0355024), the Russian Foundation for Basic Re-
search (RFBR-05-02-16172-a), and the North Atlantic Treaty Or-
ganization (PST-CLG-978468). D.V.K. would like to acknowl-
edge the financial support from the Delzell Foundation, Inc.

A. Green’s propagation function

A.1. Dyson equation

Light propagation through a sample consisting of atoms
with arbitrary polarizations of their angular momenta was
considered first by Cohen-Tannoudji and Laloë in [51]. In
those papers, such well known effects of optical anisotropy
of an atomic vapor as birefringence, gyrotropy and dichro-
ism were linked with the formalism of the irreducible ten-
sor components of atomic polarization, i.e. with the orien-
tation vector and alignment tensor. In the formalism of the
Green’s function, the problem of light propagation through
a polarized atomic vapor was discussed in [52]. The tech-
nique developed there permitted analytical solution for the
Green’s function in many practically important applica-
tions. We review here the basic results of [52] and make
them closer to the previously discussed conditions of CBS
experiments with a cold atomic vapor confined to a MOT.

According to a general quasi-particle conception, the
retarded-type Green’s function can be found as a solution
of the following Dyson equation[

1
c2

∂2

∂τ2
−�1

]
D

(R)
ij (r1, r2, τ) = (A.1)

= −4πh̄δ(τ)δ⊥ij(r1 − r2)+

+

∞∫
0

dτ ′
∫

d3r′1
(
P(R)
⊥

)
ii′

(r1, r′1, τ
′)D(R)

i′j (r′1, r2, τ − τ ′) ,

which reveals the normal vacuum wave equations modi-
fied by the contribution of the polarization operators on the
right-hand side. Rigorously speaking, this equation defines
only the positive frequency components of the Green’s
function derived under the assumptions of the rotating
wave approximation. But such an assumption is consistent
with the general restrictions of our calculations and is just
the Fourier image of the positive frequency components
of the Green’s function, which has to be substituted into
Eq. (2.8).

An important characteristic of Eq. (A.1) is the trans-
verse delta-function, which is given by

δ⊥ij(r) = δijδ(r) +
1
4π

∂2

∂xi∂xj

(
1
r

)
. (A.2)

Its Fourier components coincide with the δ⊥ij-symbol de-
fined by Eq. (2.6). This function selects, from any tensor
characteristic connected with atomic variables, the trans-
verse projection. Such a projected kernel of the polariza-
tion operator enters the Dyson equation (A.1) and is given
by

(P(R)
⊥ )ii′(r, r′; τ) =

∫∫
d3r1d

3r′1δ
⊥
ij(r − r1)× (A.3)

×P(R)
jj′ (r1, r′1; τ)δ⊥j′i′(r

′
1 − r′) .

In steady state conditions the polarization operator can be
expressed by its Fourier transform

P(R)
ii′ (r, r′; τ) =

∫
dω

2π
e−iωτP(R)

ii′ (r, r′; ω) , (A.4)

where

P(R)
ii′ (r, r′; ω) = (A.5)

= −4πω2

c2

∑
n

∑
m,m′

(di)mn(di′)nm′×

×
∫∫

d3p

(2πh̄)3
d3p′

(2πh̄)3
exp

[
− i

h̄
(p − p′)(r − r′)

]
×

× 1
h̄(ω − ωnm) − ε(p′) + ε(p) + ih̄γn/2

×

×ρm′m

(
p + p′

2
,
r + r′

2

)
.

Here ρm′m(p, r) are the steady state components of
atomic density matrix, in the Wigner representation, gen-
erated by an optical pumping process or due to other phys-
ical mechanisms initiating the spin polarization. We will
further assume any possible polarization in degenerate or
quasi-degenerate system of Zeeman sublevels. The func-
tion ε(p) denotes the remaining atomic kinetic energy.

In application to the CBS process we only need to
know the long range asymptotic form of the Fourier com-
ponents of the retarded Green’s function, see relation (2.8),
where the spatial points r1 and r2 are separated by a dis-
tance of many wavelengths. Then the Green’s function
can be factorized into the following product of the rapidly
oscillating exponential and the slowly varying amplitude
Xij(r1, r2;ω)

D
(R)
ij (r1, r2, ω) = (A.6)

−h̄Xij(r1, r2; ω)
exp[ik|r1 − r2|]

|r1 − r2| ,

where k = ω/c. The slowly varying amplitudes satisfy the
following differential equations

∂

∂z1
Xij(r1, r2;ω) = (A.7)
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=
2πiω

c

∑
i′=x,y

χii′(r1, ω)Xi′j(r1, r2; ω) ,

Xij(r1, r2; ω) → δ⊥ij at z1 → z2 .

where χii′(r, ω) is the tensor of the local dielectric sus-
ceptibility of the inhomogeneous and anisotropic medium,
which is given by

χii′(r, ω) = −
∑

n

∑
m,m′

(di)mn(di′)nm′× (A.8)

×
∫

d3p

(2πh̄)3
ρm′m(p, r)

h̄(ω − ωnm − kp/µ) + ih̄γn/2
,

where µ is the atomic mass. The sum over tensor indices
in Eq. (A.7) is extended only over transverse components
x, y in the reference frame associated with the z-direction
along the ray linking the points r1 and r2. The indices i, j
can be also equal to x, y in this frame.

A.2. Representation of irreducible tensor
components

The basic equation (A.7) can be modified to a form more
convenient for further analysis by expanding the atomic
density matrix in terms of irreducible tensor components.
As a first step we factorize the Wigner density matrix into
the product

ρm′m(p, r) = ρ̃m′m(r)f(p, r) , (A.9)

where f(p, r) is the classical distribution function in phase
space and ρ̃m′m(r) are the density matrix elements of the
internal states.

From here let us restrict our discussion by the prac-
tically important assumption that the spatial dependence
of the atomic polarization ρ̃m′m(r) has only a negligible
change along the spatial scale associated with an average
photon free path in the sample. Then, as a good approx-
imation in solving Eqs. (A.7), we can neglect the depen-
dence on r and consider the ρ̃m′m to be constant param-
eters. Then instead of a Zeeman basis, one can introduce
the representation of irreducible tensor components by the
following expansion

ρ̃F0
kq =

√
2k + 1
2F0 + 1

∑
m,m′

CF0m
F0m′ kq ρ̃m′m , (A.10)

where F0 is the total angular momentum of the ground
state and C...

... ... is a Clebsch-Gordon coefficient in the no-
tation of [53].

Let us define the basis set of circular polarizations. The
co- and contravariant components of any complex vector
ε in the plane orthogonal to the z-direction are given by

ε+1 = −ε−1 = − 1√
2
(εx + iεy) , (A.11)

ε−1 = −ε+1 = +
1√
2
(εx − iεy) .

In the basis set of circular polarizations the susceptibility
tensor projected on the x, y- plane can be expanded in the
set of identity and Pauli matrices as

χq
q′

(r, ω) = χ(r, ω)
[
ρ0δq

q′
+ (ρσ̂)q

q′]
, (A.12)

where the symbolic vector σ̂ = σ̂x, σ̂y, σ̂z is the set of
Pauli matrices. In this expansion the upper row and left
column of Pauli matrices are associated with the +1 index
and the respective lower row and right column with the −1
index.

The local susceptibility of an isotropic medium χ(r, ω)
can be expanded in a sum of partial contributions for each
F0 → F transition

χ(r, ω) =
∑
F

χF0F (r, ω) , (A.13)

where the partial contribution is given by

χF0F (r, ω) = − |dF0F |2
3(2F0 + 1)

× (A.14)

×
∫

d3p

(2πh̄)3
f(p, r)

h̄(ω − ωFF0 − kv) + ih̄γF /2
,

where dF0F are the reduced matrix elements of the dipole
moment for F0 → F transition.

Other expansion parameters ρ0 and ρ = (ρx, ρy, ρz)
introduced by expansion (A.12) are subsequently given by

ρ0 = ρ0(ω) = 1 + c2(ω)
1√
6
ρ̃F0
20 , (A.15)

ρx = ρx(ω) = c2(ω)
1
2

[
ρ̃F0
2−2 + ρ̃F0

22

]
,

ρy = ρy(ω) = c2(ω)
1
2i

[
ρ̃F0
2−2 − ρ̃F0

22

]
,

ρz = ρz(ω) = c1(ω)ρ̃F0
10 ,

where the complex factors c1(ω) and c2(ω) are

c1(ω) =
1

χ(r, ω)

∑
F

(−)F+F0
3√
2
(2F0 + 1)× (A.16)

×
{

1 1 1
F0 F0 F

}
χF0F (r, ω) ,

c2(ω) =
1

χ(r, ω)

∑
F

(−)F+F0+13(2F0 + 1)×

×
{

1 1 2
F0 F0 F

}
χF0F (r, ω) .

These generally complex parameters do not depend on r if
the classical distribution f(p, r) is factorized into a prod-
uct of independent spatial and velocity distributions, and
they become real in the case of a closed F0 → F tran-
sition. In experiments carried out with ultracold atoms,
and with high spectral selection of certain hyperfine tran-
sitions, these factors have only a small admixture of imag-
inary part. For an isotropic sample, ρ0 → 1 and ρ → 0.
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A.3. The phase integral representation of slowly
varying amplitudes

The independence of the symbolic vector ρ on r leads to
commutativity of matrices χ̂(r, ω) considered at different
spatial points along a light ray. In turn, this makes possible
analytical solution of Eq. (A.7). Let us define the complex
length ρ of the symbolic vector ρ as

ρ = ρ(ω) = |ρ(ω)|eiψ(ω) , (A.17)

ρ2 = |ρ(ω)|2e2iψ(ω) = ρ2
x + ρ2

y + ρ2
z .

The spectrally dependent parameter ρ = ρ(ω) is a com-
bined characteristic of anisotropy effects, which can man-
ifest themselves in dispersion as well as in absorption.

As can be straightforwardly verified in a circular po-
larization basis, the slowly varying amplitude can be ex-
pressed in terms of phase integrals in the following form

Xq1
q2(r1, r2, ω) = eiφ0(r1,r2)× (A.18)

× [cos(φ(r1, r2))δq1
q2 + i sin(φ(r1, r2))(nσ̂)q1

q2 ] ,

where

φ0(r1, r2) = ρ0(ω)
2πω

c

r1∫
r2

χ(r, ω) ds , (A.19)

φ(r1, r2) = ρ(ω)
2πω

c

r1∫
r2

χ(r, ω) ds

and

n = n(ω) =
ρ(ω)
ρ(ω)

. (A.20)

The integrals in (A.19) are evaluated along the light ray
linking the points r2 and r1. All the parameters on the right
hand side of (A.18) are spectrally dependent.

The Cartesian tensor components of the slowly varying
amplitudes Xij(r1, r2, ω) can be restored via the transfor-
mations reverse to (A.11) with no remaining importance
given to the covariant notation. In a Cartesian basis set the
slowly varying amplitudes are given by

X11(r1, r2, ω) = (A.21)

= eiφ0(r1,r2) [cos(φ(r1, r2)) − i sin(φ(r1, r2))nx] ,

X22(r1, r2, ω) =

= eiφ0(r1,r2) [cos(φ(r1, r2)) + i sin(φ(r1, r2))nx] ,

X12(r1, r2, ω) = eiφ0(r1,r2)i sin(φ(r1, r2))(ny + inz) ,

X21(r1, r2, ω) = eiφ0(r1,r2)i sin(φ(r1, r2))(ny − inz) ,

where the indices 1 and 2 relate to the x and y components
respectively. In these expressions, the physical meaning of

the symbolic vectors ρ or n is clearly seen. The compo-
nent ρz is responsible for gyrotropy and circular dichro-
ism of the atomic vapor. The other two components ρx

and ρy are responsible for the effects of birefringence and
dichroism in linear polarization defined with respect to ei-
ther x, y axes or to an alternative basis rotated relative to
x, y by an angle of π/4. Let us point out that the phase in-
tegrals (A.19) have real (dispersion) as well as imaginary
(absorption) parts.

We conclude this appendix by the following remark
concerning the validity of the representation of slowly
varying amplitudes in the forms (A.18) or (A.21). As fol-
lows from the above discussion, our approach does not ap-
ply when the spatial distribution of any type of polarization
does not directly reflect the density distribution of atoms.
In the most general case, different polarization compo-
nents can be described by different spatial distributions.
However there are two important limits where our assump-
tions are self-consistent. The first is resonant scattering in
a dense atomic cloud. Then the photon free path scaling
an average separation between the points r1 and r2, see
example (2.2), can be small enough in comparison with
the spatial scale where the distribution of the polarization
components has noticeably changed. Then in a practical
application of (A.21), as a first and reliable approxima-
tion, it seems reasonable to use the polarization compo-
nents averaged for the atoms located along the light ray
between these points. The second quite important limit is
a highly polarized atomic ensemble with 100% spin orien-
tation. For such an ensemble the polarization distribution
normalized to the local density will be uniform with high
accuracy.
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(1967); C. Cohen-Tannoudji and F.J. Laloë J. de Phys. 28,
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